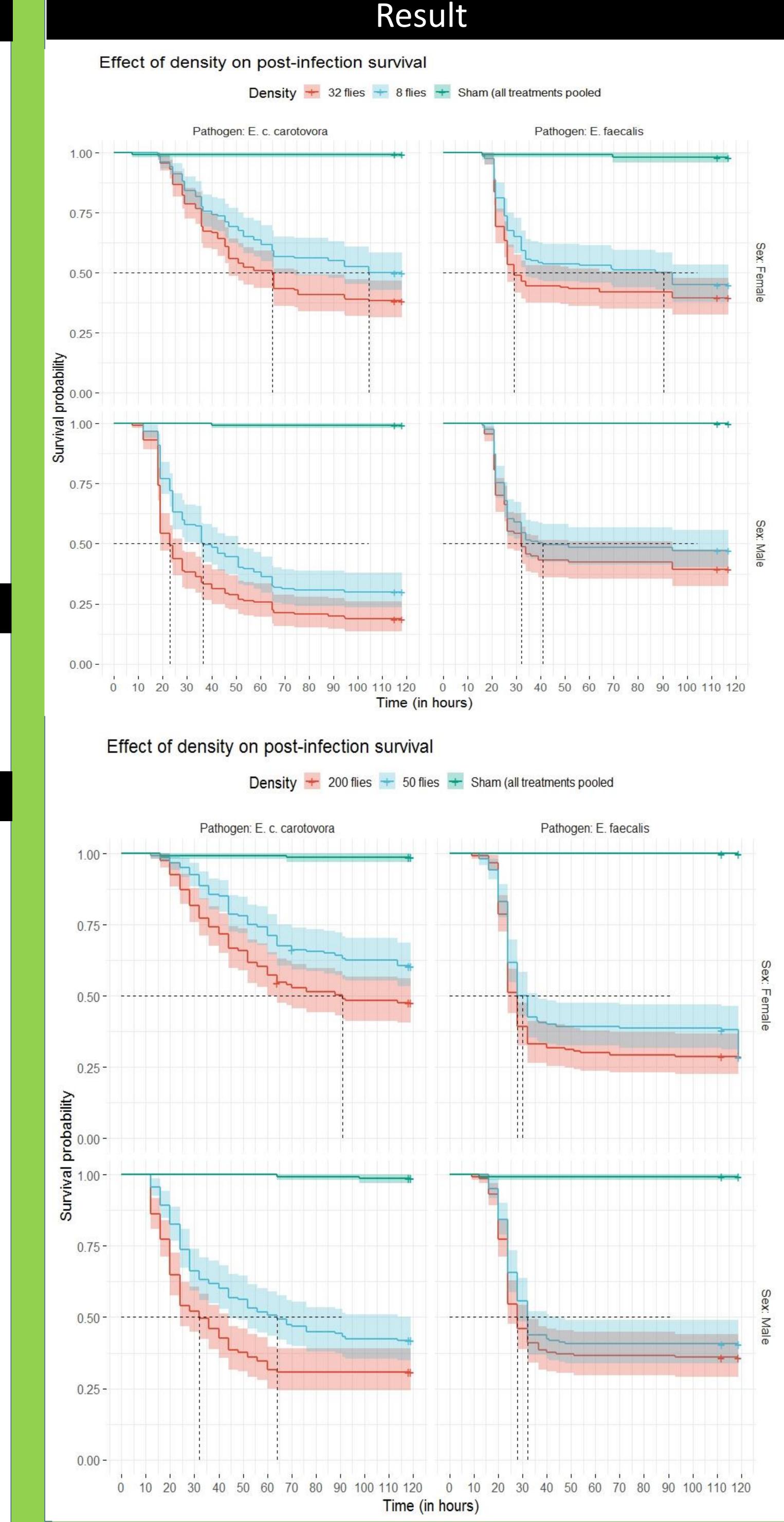


No evidence for Density-Dependent Prophylaxis in response to adult crowding in Drosophila melanogaster

Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India

Introduction

- Risk of infection is expected to increase due to increase in host population density.
- Increasing population density can be stressful and detrimental to host physiology, making hosts more susceptible to disease outbreaks.
- At higher densities therefore it is beneficial for the hosts to upregulate immune function in anticipation of greater pathogen pressure: Density-Dependent Prophylaxis.
- Immune function of flies changes based on whether they are hosted individually or in uni-sex pair.
- Possibility of Density Dependent Prophylaxis has never been directly tested in *Drosophila melanogaster*


Research Question

How does manipulating adult density change immune function in Drosophila melanogaster?

Experimental Design

Eggs were Infection Conditioning collected was done on was done on from BRB 14th day post 12th day post population(egg egg collection Day1 collection

2-3-day old adult flies were sorted into fresh food vials (with 1.5-2 mL of food medium) at densities of (8 individuals or 32 individuals) or (50 individuals or 200 individuals) in each vial, in 1:1 sex ratio. The flies were held in these vials for two days, the *conditioning* period. After the conditioning the flies were subjected to infections, and housed at density of 4 males and 4 females per vial. For immunity assays, 20 infection vials were set up per density treatment and 10 sham-infection vials were set up per treatment. The experiment was replicated twice with pathogens Erwinia c.carotovora and Enterococcus faecalis



Paresh Nath Das, Aabeer Kumar Basu, Nagaraj Guru Prasad

- the adults
- density treatment.
- at higher density.

we found no indication of induction of Density Dependent Prophylaxis by crowding of adults in *Drosophila melanogaster*. Results suggest that flies at lower densities either have better or equal immune proficiency as the flies at higher densities.

- insect disease. *Ecology*, *39*(3), pp.503-514.

• For flies infected with *Enterococcus faecalis*, neither sex nor density treatment had any effect on post-infection survival of

• For flies infected with *Erwinia c. carotovora*,

• females in general survived better than males, irrespective of

• For (32 adults vs 8 adults), flies conditioned at lower density had significantly greater survival compared to flies crowded

Conclusion

References

• Steinhaus, E.A., 1958. Crowding as a possible stress factor in

• Wilson, K. and Reeson, A.F., 1998. Density-dependent prophylaxis: evidence from Lepidoptera–baculovirus interactions?. Ecological Entomology, 23(1), pp.100-101.

• Leech, T., Evison, S.E., Armitage, S.A., Sait, S.M. and Bretman, A., 2019. Interactive effects of social environment, age and sex on immune responses in Drosophila melanogaster. Journal of evolutionary biology, 32(10), pp.1082-1092.

• R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Acknowledgement

Animal Behavior Symposium Poster Presentation

Correspondence: pareshnathd@gmail.com