Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease

PLoS Neglected Tropical Diseases

CONTACT: COURTNEY MURDOCK, CMURDOCK@UGA.EDU

Environmental factors influence the dynamics of mosquito-borne disease transmission. Most models used to predict mosquito-borne disease transmission incorporate climate data collected at coarser scales than mosquitoes typically experience. Climate conditions can vary greatly between indoor and outdoor environments, and are influenced by landscape features. We conducted a field experiment with the Asian tiger mosquito to explore how microclimate variation across an urban landscape affects mosquito life history and potential to transmit arboviruses, like dengue. We demonstrate that climate conditions captured by weather stations do not reflect relevant mosquito microclimate, and that subtle variation in mean and diurnal ranges of temperature and relative humidity can lead to appreciable variation in key mosquito / pathogen traits that are important for transmission. Our results have implications for statistical and mechanistic models used to predict variation in transmission across seasons, regions, and land uses, but also for building in realistic environmental variation in laboratory work on mosquito-pathogen interactions. Finally, the variation in microclimate we observed across land use was subtle; likely because our study site is a relatively small city. Nevertheless, these translated into considerable differences in mosquito traits and dengue transmission potential, suggesting these effects could be much larger in more expansive cities.

  • Murdock CC, Evans MV, McClanahan TD, Miazgowicz KL, Tesla B (2017) Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease. PLoS Negl Trop Dis 11(5): e0005640. [online]